If you’ve worked with steel or iron, you will be very familiar with rust. You will have

If you’ve worked with steel or iron, you will be very familiar with rust. You will have an impressive armoury of wire brushes and chemicals to deal with it, and your sandblasting guy is probably in your speed-dial list. We’ve had more than one Hackaday reader contact us of late with videos showing an apparently miraculous handheld laser unit effortlessly stripping away rust, and leaving a near-perfect surface with little mess. Can it be real, they ask, is it an internet hoax? After all if you have done battle with the dreaded iron oxide you’ll know there is no miracle fix to the problem, however you deal with it there has traditionally been hard work involved. So after a bit of research, we find CleanLaser, the German company whose products feature in the videos. Quoting their website: “Powerful, very short, rapid and moving laser pulses produce micro-plasma bursts, shockwaves and thermal pressure resulting in sublimation and ejection of the target material”. So yes, it seems they’re real. The website is at pains to stress the environmental benefits of the devices over comparable sandblasting or similar technologies, but has very little information on their safety. They are avai...

Advanced industrial lasers have evolved well beyond simple cutting and welding applications. Laser technology now offers

Advanced industrial lasers have evolved well beyond simple cutting and welding applications. Laser technology now offers an industrial de-coating and surface cleaning solution that is cost effective as well as responsive to environmental concerns. From the automated cleaning of molds to precise de-coating to oxide removal, laser surface treatments are proving to be an attractive option to traditional labor-intensive methods. In the past decade laser paint removal and cleaning systems have generated significant interest as a viable alternative to conventional cleaning and paint removal technologies. Research on mobile, reliable, and powerful laser systems for cleaning and paint removal operations began in the late 1980s with the modification of welding or cutting lasers into laser systems for surface preparation. This approach did not meet the requirements for surface preparation, which are significantly different than for cutting and welding. In the early 1990s, research took place around the world for more efficient, reliable laser systems for surface preparation work. It took another few years to develop the technology from experimental laboratory systems to dependable systems...

Laser cleaning and polishing approach the mainstream

Lasers used for cleaning have high power and high beam quality values, resulting in larger spot diameters and a deep depth of focus. Until recently, laser cleaning has been limited in application, yet videos of handheld laser cleaning systems generate millions of hits on the Internet. Therefore, laser cleaning is advancing and companies such as Blueacre Technology are now implementing similar principles used in medical device and semiconductor processing, where the laser process is supplemented with ancillary processes to increase process yield and reduce overall production costs. At its most basic, laser cleaning is a process in which optical radiation is directed to a part to remove unwanted material from the surface. The surface contamination tends to be rust on steel, oxide layers on aluminum prior to welding, and coatings such as paint. As shown in FIGURE 1, laser cleaning is very efficient at surface layer removal. Lasers used for cleaning have high power and high beam quality (M2) values, resulting in larger spot diameters and a deep depth of focus. Therefore, lasers can clean parts with multiple surfaces, each of which may be at a significantly different focal depth. Dep...